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1 Introduction

This report documents work performed using ALCC computing resources granted under
a proposal submitted in February 2016, with the resource allocation period spanning the
period July 2016 through June 2017. The award allocation was 10.7 million processor-hours
at the National Energy Research Scientific Computing Center. The simulations performed
were in support of two projects: the Atmosphere to Electrons (A2e) project, supported by
the DOE EERE office; and the Exascale Computing Project (ECP), supported by the DOE
Office of Science. The project team for both efforts consists of staff scientists and postdocs
from Sandia National Laboratories and the National Renewable Energy Laboratory.

At the heart of these projects is the open-source computational-fluid-dynamics (CFD)
code, Nalu1. Nalu solves the low-Mach-number Navier-Stokes equations using an unstructured-
grid discretization. Nalu leverages the open-source Trilinos solver library [1] and the Sierra
Toolkit (STK) [2] for parallelization and I/O.

This report documents baseline computational performance of the Nalu code on problems
of direct relevance to the wind plant physics application - namely, Large Eddy Simulation
(LES) of an atmospheric boundary layer (ABL) flow and wall-modeled LES of a flow past
a static wind turbine rotor blade. Parallel performance of Nalu and its constituent solver
routines residing in the Trilinos library has been assessed previously under various campaigns.
However, both Nalu and Trilinos have been, and remain, in active development and resources

∗Sandia National Laboratories is a multi-mission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

1https://github.com/nalucfd/nalu; http://nalu.readthedocs.io
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have not been available previously to rigorously track code performance over time. With the
initiation of the ECP, it is important to establish and document baseline code performance
on the problems of interest. This will allow the project team to identify and target any
deficiencies in performance, as well as highlight any performance bottlenecks as we exercise
the code on a greater variety of platforms and at larger scales. The current study is rather
modest in scale, examining performance on problem sizes of O(100 million) elements and
core counts up to 8k cores. This will be expanded as more computational resources become
available to the projects.

2 ABL Simulations

2.1 Problem Setup

The first test case used to generate performace data consists of simulation of a turbulent
atmospheric boundary layer under neutral stratification (i.e., isothermal conditions). The
domain is a 3km long by 3km wide by 2km high box, with periodic boundary conditions
specified at all four lateral boundaries, a rough-wall surface layer boundary condition applied
at the ground plane, and an open boundary condition with specified geostrophic wind velocity
applied on the top boundary. The solution is initialized with a power law boundary layer
velocity profile along with superimposed dilatation-free perturbations applied within the
boundary layer to acceleration transition of the flow to a turbulent state. These LES cases
are run with a standard Smagorinsky sub-grid scale model. A snapshot of the wind field
from one of the simulations is shown in Figure 1. The intent of these simulations was
not to perform verification or validation of the LES per se; we only focused on setting
up as realistic a case as possible with current physics model capability within the code
and observing qualititative solution behavior to ensure the simulations are relevant for our
application. However, these cases are expected to also serve as useful V&V cases as we
mature the physics model capability.

The mesh consists of a single, structured hexahedral block with uniform spacing in all
three coordinate directions. Two meshes are used in this study: a 256x256x256 element mesh,
containing a total of 16.7 million elements; and a 512x512x512 element mesh, containing a
total of 134.2 million elements. The time step is specified to maintain a maximum Courant
number of approximately 0.7 for each simulation; thus, as the mesh is refined, the time
step is reduced accordingly. The cases were run for a minimum of 5000 time steps up to a
maximum of 50,000 time steps, during which timings were collected. Timings within Nalu
are wall-clock times reported for individual elements of the equation system setup and solve
operations, for each equation set that is solved. The timings reported here are times per
time step, obtained by taking the maximum total wall-clock time for each operation over
all MPI ranks, and dividing by the number of time steps. Here, we are assessing MPI-only
performance of Nalu; threading strategies are not considered in these baseline simulations.

Most of the ABL simulations were run on the Cori machine at the National Energy
Research Scientific Computing Center. Cori is a Cray XC40 computer with two partitions: an
Intel Haswell partition (2004 Haswell compute nodes, 32 cores per node), and an Intel Knights
Landing partition (9304 KNL nodes, 68 cores per node). The present results are all obtained
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Figure 1: Wind velocity in the driving geostropic direction from LES simulation of the
atmospheric boundary layer.

running on the Haswell partion only, with 32 MPI ranks per node. Note that Cori is a
relatively new machine, but is very similar to the National Nuclear Security Administration’s
Trinity machine, on which Nalu has been run at large scale for both acceptance testing as
well as during the Trinity Open Science period.

2.2 ABL Simulations on Cori

Results are first presented for strong scaling. We show wall-clock speed-up factors as problem
size is kept constant and number of cores (and MPI ranks) is increased. Figure 2 shows strong
scaling results for the major momentum equation operations for both the 16.7 million element
mesh and the 134.2 million element mesh. In all the plots, the black dashed line represents
ideal speed-up, where speed-up is calculated relative to the timing for the job run on the
smallest number of cores for a particular problem size. The momentum assembly and solve
operations exhibit excellent strong scaling, while the preconditioner setup is only slightly
sub-optimal as the number of elements per core reduces to 16K.

Figure 3 gives strong scaling results for the continuity equation system. This involves
setup and solution of a Poisson system for pressure. The assembly operation demonstrates
ideal scaling or better, while the preconditioner setup and the solve operations suffer a
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Figure 2: Strong scaling for momentum equation system operations.

degradation in performance as the number of cores increases. Note that the number of linear
solver iterations remained nearly constant for each of the simulations. Figure 4 shows strong
scaling for the total wall-clock time per time step. While the parallel efficiency begins to
deteriorate for 8192 cores, this data point represents an agressive element count per-core of
approximately 16,000.
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Figure 3: Strong scaling for continuity equation operations (Poisson system) on Cori.

Figure 5 shows weak scaling results for the momentum solve. In weak scaling, the amount
of computational work per core is kept constant as the number of cores increases. We plot
the time per time step (in seconds) as the number of cores increases, and ideal behavior is
that this time remains constant. The conclusions drawn from these results are the same as
for the strong scaling study.
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Figure 4: Strong scaling for total wall-clock time per step on Cori.

3 Blade Simulations

We examine here simulations of a finite-length (3.3 ft) NACA0015 blade with 1 ft cord length
that was experimentally investigated in a wind tunnel by Mcalister and Takahashi [3]. This
system was chosen because experimental data includes details about tip vortex evolution for
flat- and rounded-tip configurations in addition to other detailed flow measurements.

This section is organized as follows.

• description of the RANS-LES turbulence model, with testing results,

• description of the numerical methods,

• description of simulation, timing, and scaling results,

• description of preliminary validation through comparison of Nalu results with those
published in [3].

3.1 RANS-LES turbulence model

3.1.1 Model description

The hybrid Reynolds-averaged-Navier-Stokes large-eddy-simulation (RANS-LES) turbulence
modeling approach chosen for this work is the Shear Stress Transport (SST) – Detached
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Figure 5: Weak scaling for momentum equation system assemble and solve on Cori.

Eddy Simulation (DES) turbulence model. The 2003 Menter SST model [4] transports the
turbulent kinetic energy, k, and the specific dissipation rate, ω. This model combines the
advantages of the k − ǫ and k − ω models by blending these models to use the former far
from the walls and the latter near the walls. The SST-DES model provides a theoretical
basis for transient flows by relaxing the solely RANS-based approach. In this model, the
SST kinetic-energy equation is modified to incorporate a new minimum dissipation scale.
Details about the models and their implementation in Nalu can be found in the Nalu theory
documentation (SST, DES2, and LES3). Additionally, we performed large eddy simulations
using a nonlinear stabilization operator as a subgrid scale turbulence model. Details about
this model can be found in Section 3.2.3.

3.1.2 Automated test suite

Unit tests were developed to exercise the core components of the hybrid RANS-LES turbu-
lence model. This includes tests for the maximum length scale calculation, the turbulent
viscosity computed through various turbulence models (SST, LES ksgs, LES WALE, and
LES Smagorinsky), and various source terms for the k and ω evolution equations. Following
previous testing and verification efforts, the unit tests use manufactured solutions for the
necessary input fields to calculate the output field (e.g., turbulent viscosity, source terms,
etc.). Field norms are compared to target norms obtained from an independent code. A
github pull request4 describes the unit-test implementation in Nalu.

2http://nalu.readthedocs.io/en/latest/source/theory/supportedEquationSet.html
3http://nalu.readthedocs.io/en/latest/source/theory/turbulenceModeling.html
4https://github.com/NaluCFD/Nalu/pull/155

6



Figure 6: Code-to-code comparison between Nalu and NASA codes for the flat plate drag
coefficient vs. element size (left) and the skin friction coefficient distribution for a 2D bump
in channel flow at t = 0.4 (1409×641 mesh) (right) using the SST RANS model.

3.1.3 Verification and validation efforts (SST RANS)

Code-to-code verification of the SST RANS model was performed in a comparison of sev-
eral standard test cases proposed in NASA’s Turbulence Modeling Resource5. For these
simulations, as opposed to those of the McAlister blade described in Section 3.2.7, no wall
function was used to model the boundary layer. Figure 6 shows Nalu simulation results of
the 2D zero pressure gradient flat plate and the 2D bump-in-channel as well as simulation
results from the NASA CFL3D and FUN3D codes. Though both of NASA’s codes solve the
compressible Navier-Stokes equations and Nalu solves the low-Mach equations, the Mach
numbers for these test cases are low enough such that the flow can be considered incom-
pressible. Figure 6(a) shows the drag coefficient, Cd, as a function of grid size. FUN3D is
a vertex centered scheme and uses a normal distance at the wall node close to that used in
Nalu. This accounts for the very close agreement between Nalu and FUN3D. For the 2D
bump-in-channel, Figure 6(b) shows the skin-friction-coefficient streamwise distribution, Cf ,
at t = 0.5, where each model has the same mesh (1409×641).

Following NASA’s Turbulence Modeling Resource validation test cases, experimental
data of turbulent flow over a backward facing step [5] were used to perform validation of
the SST RANS model. Figure 7 shows vertical velocity distributions at two locations in the
domain as produced by Nalu and CFL3D along with experimental results. Nalu simulation
results compare well with the experimental data and published NASA code results.

3.2 Numerical methods

The Nalu code base, as described in greater detail within the theory manual6, supports a
low-order control volume finite element (CVFEM) and edge-based vertex centered (EBVC)
on generalized topological meshes and a high-order CVFEM implementation on hexahedral

5https://turbmodels.larc.nasa.gov
6http://nalu.readthedocs.io
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Figure 7: Comparison of velocity profiles from Nalu using the SST RANS model, the NASA
CFLD3D code, and experimental data [5] at different downstream locations. x = 1 behind
the step (left). x = 4 behind the step (right).

meshes. This set of vertex-based schemes are naturally described as Petrov-Galerkin schemes
because the test function (defined as piecewise-constant) is different than the underlying in-
terpolation scheme. A representative hexahedral and tetrahedral element, with associated
dual-mesh definitions, can be found in Figure 8. Quadrature points are either at the subcon-
trol surfaces for integrated-by-parts terms, e.g., advection and diffusion, or subcontrol volume
points for volumetric contributions, e.g., source terms and mass matrix. For the edge-based
scheme, subcontrol volume surfaces are assembled to all connected edges whereas subcon-
trol volumes are assembled to all connected nodes. Therefore, the element-based scheme is
transformed to an edge- and node-based data structure.

In all fluids algorithms, an equal-order interpolation scheme is used. This drives the need
for pressure stabilization which can be interpreted as adding a fine-scale momentum residual
to the continuity equation. In this low-Mach turbulent flow application, an incremental,
approximate pressure-projection scheme is used. Splitting errors are controlled by nonlinear
iteration which, along with the BDF2 time integrator, demonstrates second-order-in-time
accuracy. The low-order schemes are limited to second-order accuracy, whereas a generalized
polynomial promotion demonstrates spectral convergence.

An interesting numerical nuance of the CVFEM methodology is that the Laplace (i.e.,
diffusion) operator, can be non-monotonic for element aspect ratios greater than

√
3 (the

classic finite element method diffusion operator loses monotonicity at
√

2). Extreme volume-
element volume jumps, especially on tetrahedral meshes, are also problematic. Although the
diffusion operator for the edge-based scheme does not suffer monotonicity issues, the usage
of nonorthogonal correction terms, can be problematic. These correction terms are a simple
consequence of the fact that, on unstructured meshes, the edge-distance vector and edge-area
vector are not orthogonal.
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Figure 8: Representative CVFEM dual-mesh definitions. Low-order hexahedral CVFEM
element (left) and low-order tetrahedral CVFEM element (right).

3.2.1 Hybrid CVFEM and EBVC

When concentrating on low-order solutions, a compromise between speed and accuracy can
be found. Specifically, the continuity equation may be solved using an element-based scheme
while the time/advection/diffusion/source PDE set can use an edge-based scheme. This
hybrid scheme requires the mass flow rate from the continuity system to be assembled to the
edges of the element.

3.2.2 Quadrature for CVFEM

In order to mitigate the non-monotonic issues associated with the diffusion operator on
high-aspect ratio meshes, the CVFEM subcontrol surface quadrature points can be moved
(or shifted) to the element edge-midpoints. For orthogonal meshes, the scheme reverts
to a canonical seven-point stencil on hexahedral meshes. For high aspect ratio meshes,
this mitigates the sign flipping of the off diagonal diffusion operator column entries. On
tetrahedral meshes, moving quadrature points does not help as the gradient operator is
constant.

Frequently, the pressure field is very smooth and shifting quadrature points is not re-
quired. However, in certain situations which are associated with high aspect ratio, hybrid
meshes, the algebraic multigrid coarsening algorithm can suffer due to this non-monotonic
operator. The numerical scheme also supports using a reduced stencil Jacobian, while al-
lowing for the full element-based stencil for the residual.
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3.2.3 Advection stabilization

A variety of stabilization approaches are supported in Nalu. The stabilization ranges from
Peclet blending of limited second-order upwind methods (MUSCL) to the usage of nonlin-
ear stabilization operators (NSO). For details on the stabilization supported, the reader is
referred to the Nalu theory manual7.

Although usage of upwind-limited stabilization operators remains the norm for hybrid-
based simulations, usage of such methods on generalized unstructured meshes provides a
numerical scheme that is limited to second-order in space. Therefore, the project is evaluating
the usage of NSO for both stabilization and even LES turbulence models. The formal finite
element kernel for a NSO approach is as follows,

∑

e

∫

Ω

ν(R)
∂w

∂xi

gij ∂φ

∂xj

dΩ, (1)

where ν(R) is the artificial viscosity which is a function of the PDE fine-scale residual and
gij is the covariant metric tensor. At present, a variety of fine scale residuals are supported.
When the form of ν is proportional to the equation set, we view this as an advection sta-
bilization approach. In some cases, ν can be written in terms of a fine scale kinetic energy
residual and follows concepts similar to an entropy-viscosity approach where the interpreta-
tion is transformed from pure advection stabilization to an implicit LES modeling approach.
Using a piecewise-constant test function suitable for CVFEM and EBVC schemes Eq. 1 can
be written as,

−
∑

e

∫

Γ

ν(R)gij ∂φ

∂xj

nidS. (2)

3.2.4 Linear solvers

The main computational costs incurred during a time-step are due to the iterative solution
of the momentum and continuity equations, embedded within an outer nonlinear-system-
solve Picard iteration. The momentum equation includes gradient and divergence operators
associated with advection and pressure force terms. The resulting matrix is non-symmetric
and three-times larger than the continuity equation matrix. The continuity equation involves
the Laplacian and the CVFEM discretization can result in a non-symmetric matrix form.
Nalu employs a time-split algorithm where the momentum and continuity equations are
solved separately instead of together in a large block matrix form. Both the momentum
and continuity linear solvers are based on the preconditioned generalized miminum residual
(GMRES) Krylov iteration for non-symmetric matrices. The momentum linear system is
far less ‘stiff’ than the continuity equation. Either a stationary relaxation or incomplete
ILU factorization is typically employed as the momentum preconditioner. For the more
ill-conditioned continuity solver, smoothed-aggregation algebraic multigrid (SA-AMG) is
employed as the preconditioner. The symmetric SA-AMG algorithm in the Trilinos/MueLu
framework is applied with an implicit restriction operator where the coarse matrix is Ac =
P T AP . The SA-AMG coarsening algorithm generates the matrices at each level of a V -
cycle hierarchy. The coarsening rate between levels is crucial for convergence and efficiency;

7http://nalu.readthedocs.io
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typically an order-ten-times decrease in the number of rows between levels is optimal. Thus,
a drop tolerance and possibly a distance Laplacian are required when the grid aspect ratio is
large. Smoothers are applied at each level of the V -cycle and these may be relaxation schemes
such as Gauss-Seidel-L1, Chebyshev polynomial iterations, or incomplete ILU factorizations.
The latter take the form of additive-Schwarz sub-domain solves with or without overlap.

3.2.5 Simulation and timing results

Simulations of the [3] NACA0015 experiment were performed to establish baseline Nalu
turbulence modeling and solver capabilities.

3.2.6 Experimental setup

The experiments were performed in the NASA Ames 7 ft × 10 ft Subsonic Wind Tunnel No.
2. The wings tested were semispan NACA0015 wings without twist or taper. These were
mounted on a splitter plate extending from floor to ceiling and positioned about 1 ft away
from the side wall. Wings with different aspect ratios, chord lengths, angle of attacks, and tip
types (square or rounded) were instrumented to study pressure, lift, and drag coefficients at
different Reynolds numbers, Re. Importantly, wing-tip vortex characteristics were measured
using a laser-velocimeter system and a rapid-scan technique for capturing velocity profiles.

3.2.7 Simulation description

Nalu was used to perform simulations of the Re = 1.5 × 106 case with a 12◦ angle of
attack, a 1 ft chord length, 3.3 aspect ratio, and a rounded wing tip. To accurately model
the experimental setup, the mesh geometry contains the tunnel walls, splitter plate (wall
mount), and the half-span wing. These model components are shown in Figure 9. The
full computational domain size is 30 ft in x (downstream direction), 10 ft in y (spanwise
direction), and 7 ft in z (vertical direction). Boundary conditions on the splitter plate and
the walls are set to no-slip. A wall function, as described in the theory manual8, is used on
the wing to model the boundary layer. The tunnel outlet is an open boundary condition.
The tunnel inlet is an inflow boundary condition. The turbulence modeling framework is
DES, a hybrid RANS-LES framework, with SST as the RANS model and Smagorinsky as
the LES model (see §3.1). For this turbulence model, assuming an eddy viscosity ratio of
µT

µ
= 0.1 and a free stream turbulence intensity of I = u′

u
= 0.0015, the inflow turbulent

kinetic energy, k, and specific dissipation rate, ω, rate are determined by

k =
3

2
(uI)2 and ω =

ρk

µ

(

µT

µ

)

−1

,

respectively. The values for µT

µ
and I are values typically chosen for these types of simulations

and inflow conditions.9

8http://nalu.readthedocs.io/en/latest/source/theory/boundaryConditions.html
9https://turbmodels.larc.nasa.gov
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Figure 9: Simulation geometry with wind-tunnel side walls (blue), wing (cyan), and splitter
plate (yellow).

3.2.8 Meshes

Using the commercial meshing package Pointwise10, a series of fully conformal (point matched)
unstructured meshes were constructed consisting of mixed finite element types. The wing
surface is discretized with quadrilateral and triangle faces, which are elevated away from
the surface to create a near-wing layer of hexahedral and wedge elements with faces that
are naturally aligned parallel to, and normal to, the wing surface. This near-wing layer
transitions to an outer region of the wind tunnel test section domain, which is meshed with
tetrahedra. The transition from hexahedral to tetrahedral elements is achieved using pyra-
mid transition elements. A hexahedral mesh block with fine mesh spacing is placed in the
tip vortex region, beginning 1.2 chord lengths downstream from the wing tip and extending
for 16 chord lengths to the end of the domain. Examples of the surface meshes are shown in
Figure 10. This hexahedral mesh block is also surrounded by a layer of transitional pyramid
elements separating it from the surrounding tetrahedral elements.

In our mesh-creation process a first coarse mesh was made, consisting of 65 million
finite elements and 35 million nodes. We encountered substantial difficulty in converging
the Poisson equation for pressure on this mesh. Closer examination of the mesh revealed
a prevalence of highly skewed tetrahedral elements near the transition from the near-wing
mesh layer and the outer tetrahedral-element region. There were over 8,000 finite elements
with an equi-angle skewness metric greater than 0.9 on this mesh. Solution quality was poor
where these finite elements were prevalent in areas of high solution gradients. The near-wing
mesh region was regenerated, allowing for a larger number of element layers and alleviating
the element skewness problem. This regenerated mesh was composed of 68M finite elements
and 41M nodes. Note that some skewed elements were still present on the new mesh (about
15 finite elements with equi-angle skewness of more than 0.9); however, these elements were

10http://www.pointwise.com
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Figure 10: Surface meshes for the [3] wing. Mesh near wing root and splitter plate (left).
Mesh on wing near the tip and tip-vortex block (right)

no longer present in a region of high solution gradients. Poisson-system solver performance,
as well as solution quality, improved dramatically with this improvement in the mesh.

A finer mesh was constructed by refining the tip vortex hexahedral block by a factor of
two in each coordinate direction. This resulted in an increase in finite element count in the
tip vortex block by a factor of eight, as well as an increase in element count in the surrounding
unstructured mesh blocks adjoining the hexehedral block. The total finite element count of
this finer mesh is 299 million, while the node count is 224 million. The finite element count
increased by a factor of 4.6 over the coarser mesh, while the node count increased by a factor
of 6.4.

These baseline meshes were constructed with a very fine wall-normal mesh spacing at
the wing surface, in order to allow the near-wall RANS model to be directly integrated to
the surface without use of a wall function. Thus, the maximum finite element aspect ratio
is approximately 34,000. In order to examine the impact of element aspect ratio on solver
performance, we also constructed a family of meshes with near wall spacing that is one
hundred times larger than the original spacing. Thus, the maximum element aspect ratio on
this second family of meshes is approximately 340. In simulations on these meshes, a wall
function is used to provide an appropriate shear stress boundary condition value on the wing
surface. Table 1 summarizes the meshes used in this study.

Mesh Name Elements (M) Nodes (M) Max Elem. AR Max Elem. VR
grid07conformal03 68.3 40.5 34, 672 26.8
grid07conformal03lowAR 63.6 35.6 346.7 32.4
grid07conformal04 298.8 224.3 34, 672 26.8
grid07conformal04lowAR 294.31 219.45 346.7 32.4

Table 1: Mesh characteristics. AR = Aspect Ratio. VR = Volume Ratio.
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Figure 11: Flow visualization of the tip vortex generated by the McAlister wing using an
unstructured mesh with 68M finite elements.

3.2.9 Results

Simulations were run with a variety of turbulence models and linear-solver options. Figure 11
shows representative results for the grid07conformal03 mesh where the tip vortex is evident.

Linear solver performance

As all of the simulations were run using a Courant-limited timestep of less than 2, the
time/advection/diffusion solves using GMRES and symmetric-Gauss-Seidel, e.g., momen-
tum and SST equation sets, demonstrated highly efficient solves. The increased diagonal
dominance of the linear system due to the timestep (mass) term provided for linear GMRES
iterations of generally less than 5. All simulations using the low-aspect ratio mesh were
stable using both the SST-DES and LES models.

The continuity solver also employs the non-symmetric GMRES Krylov iteration, but with
an algebraic-multigrid (AMG) preconditioner provided by the Trilinos MueLu framework.
The coarsening algorithm is based on smoothed aggregation AMG with a drop-tolerance. The
AMG smoother adopted for these simulations was one iteration of additive-Schwarz with an
ILU(k) factorization of the sub-domain matrix. The XML file containing these settings is
provided in Appendix A. To investigate the effect of mesh resolution on the continuity solve,
Figure 12 outlines the GMRES iteration counts for the shifted CVFEM Jacobian with the full
CVFEM Laplace operator for both the 68M and 294M SST-DES simulation. The simulation
is using additive-Schwarz (0-overlap) ILU(0). Results indicate similar iteration counts for the
LES-based models indicating that physics does not drive continuity solver performance (not
shown). This finding is expected based on the isothermal, uniform turbulent flow physics
in use. Average continuity iteration counts for all of the simulations over 20,000 time steps
were generally O(15). Averages for momentum and SST solves were less than O(5).
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Figure 12: Number of GMRES solver iterations in the continuity solve for each
time step. 68M element mesh grid07conformal03lowAR (left). 300M element mesh
grid07conformal04lowAR (right).
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Strong scaling

The McAlister-blade Nalu model was employed in a strong scaling performance study on the
NERSC Cori11 supercomputer. The Nalu model was tested with 32-core Intel Haswell nodes
under MPI-only parallelism. For testing purposes, the model was integrated 50 time steps
past an initial transient to a point where the Courant number of the flow is approaching 1
and the GMRES iteration counts are relatively constant for both momentum and continuity
solves. The continuity solver takes up almost half of the measured run-time and the choice
of MueLu-AMG smoother affects the GMRES iteration counts and, consequently, the overall
run-time of the model. The smoothers compared for the full CVFEM discretization were
a novel additive-Schwarz method (ASM) with threshold incomplete factorization ILUT(1)
with the maximum fill per row specified, four sweeps of Gauss-Seidel-L1, four sweeps of the
Chebyshev iteration (XML parameters provided in Appendix A). The threshold variant
of the ILU smoother is required to handle the more complex CVFEM discretisation, for
the continuity equation with numerical issues including monotonicity and high mesh aspect
ratios. A distance Laplacian is required for the aggregation algorithm when the full CVFEM
is employed. The 68M finite element mesh problem was executed with pure MPI on up to
8196 cores. Run times are plotted in Figure 13.

With 1024 cores there are 68K finite elements per core and at 2048 cores with roughly
33K finite elements per core. We observe that the Nalu code continues to scale in the range of
2048 up to 6144 cores, however, with the Gauss-Seidel-L1 and Chebyshev smoothers the run-
times begin to trail off beyond 6144 processor cores when there are 11000 finite elements per
core. This differs from previous studies based on hybrid edge/element discretizations without
the full CVFEM discretisation. Parallel efficiency for these simulations is plotted in Figure
14. In contrast with the Gauss-Seidel-L1 and Chebyshev smoothers, the ASM-ILUT(1)
smoother exhibits superior run-times and parallel efficiency remains above the important
0.5 level. The three smoothers are expected to display different scaling properties at high
core counts because Chebyshev employs matrix-vector products, whereas Gauss-Seidel-L1
solves are local to the MPI rank sub-domain. The ASM-ILUT(1) smoother is also local
to sub-domains but requires only one sweep. Single-processor efficiency of the incomplete
ILU factorization smoothers depends directly on the sparse forward and backward solvers
in Trilinos. These could be further improved for optimal L1-cache memory access patterns.
The full CVFEM scaling study was also carried out on the NREL Peregrine cluster with 24
Haswell cores per node. The results up to 101 nodes are presented in Figure 15. We observe
that the timing curves are steeper than Cori and flatten slightly less towards the higher core
counts. We attribute the improved scaling on Peregrine to fewer nodes per core. However,
we did not push beyond 28K finite elements per core.

In order to assess the performance of Nalu on the McAlister problem at higher core
counts, the mesh resolution was increased to 300 million finite elements. The number of
MPI ranks was varied on Cori from 1024 up to 16384 cores. where the subdomain size
is 18K finite elements at the highest core count. A simple WALE turbulence model was
applied for this scaling study. A hybrid edge/element discretization was employed for these
simulations. An additive-Schwarz ASM-ILU(0) smoother for the continuity GMRES-AMG
solver was found to be very effective as noted above for turbulence modeling. Chebyshev

11http://www.nersc.gov/users/computational-systems/cori/
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Figure 13: Strong scaling study on NERSC Cori using the McAlister 68M finite element mesh
grid07conformal03lowAR. The full CVFEM discretisation stencil is specified and WALE tur-
bulence model is applied. Continuity GMRES MueLu-AMG smoothers; additive-Schwarz
method (ASM) with threshold incomplete factorization ILUT(1) with max fill per row,
Chebyshev iteration with degree (4) polynomial or sweeps and Gauss-Seidel-L1 relaxation
with (4) sweeps.
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Figure 14: Parallel efficiency on NERSC Cori using the McAlister 68M finite element mesh
grid07conformal03lowAR. The full CVFEM discretisation stencil is specified and WALE
turbulence model is applied. Normalized cores from 1 through 24 are employed on the x-
axis. Continuity GMRES MueLu-AMG smoothers; additive-Schwarz method (ASM) with
threshold incomplete factorization ILUT(1) with max fill per row, Chebyshev iteration with
degree (4) polynomial or sweeps and Gauss-Seidel-L1 relaxation with (4) sweeps.
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Figure 15: Strong scaling study on NREL Peregrine using the McAlister 68M finite ele-
ment mesh grid07conformal03lowAR. The full CVFEM discretisation stencil is specified and
WALE turbulence model is applied. Continuity GMRES MueLu-AMG smoothers; additive-
Schwarz method (ASM) with threshold incomplete factorization ILUT(1) with max fill per
row, Chebyshev iteration with degree (4) polynomial or sweeps and Gauss-Seidel-L1 relax-
ation with (4) sweeps.
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and Gauss-Seidel-L1 smoothers were also included for comparison. In particular, we found
that the continuity GMRES iteration counts remained relatively constant throughout the
simulations with increasing core counts and corresponding sub-domain sizes, with a mean
count of O(15). The scaling results are plotted in Figure 16 and the parallel efficiency is
plotted in Figure 17. We note the efficiency drops below 0.5 above 8K cores when the number
finite elements per core is less than 36K and there are 18K finite elements per core at 16K
processors. The higher number of 32 cores per node on Cori versus 24 on Peregrine may
contribute to the flattening of the strong scaling curve.

Figure 16: Strong scaling study on NERSC Cori using the McAlister 300M finite element
mesh grid07conformal04. The hybrid edge momentum/element continuity discretisation
is specified and WALE turblulence model is applied. Continuity GMRES MueLu-AMG
smoothers; additive-Schwarz method (ASM) with incomplete factorization ILU(0) with 0-
levels of fill, Chebyshev iteration with degree (2) polynomial or sweeps and Gauss-Seidel-L1
relaxation with (2) sweeps.

Preliminary validation

A preliminary validation study was performed to evaluate turbulence-model performance
and solution dependence on mesh resolution. In the post-processing of tip-vortex simulation
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Figure 17: Parallel efficiency on NERSC Cori using the McAlister 300M finite element
mesh grid07conformal04. The hybrid edge momentum/element continuity discretisation is
specified and WALE turbulence model is applied. Normalized cores from 1 through 16
are employed on the x-axis. Continuity GMRES MueLu-AMG smoothers; additive-Schwarz
method (ASM) with incomplete factorization ILU(0) with 0-levels of fill, Chebyshev iteration
with degree (2) polynomial or sweeps and Gauss-Seidel-L1 relaxation with (2) sweeps.

21



Figure 18: Velocities in the tip-vortex at x/c = 5 as function of spanwise direction. Stream-
wise velocity (left). Vertical velocity (right).

data, field slices in the downstream wake region were taken for the last twenty simulation
time steps. These were then temporally averaged to provide the point-wise field averages in
each slice. The tip-vortex core was determined by finding the minimum pressure location
in each averaged slice. Finally, the downstream and vertical velocities were extracted in
the spanwise directions across the vortex core. A similar temporal averaging procedure was
followed for post-processing wing surface data. For the grid07conformal03lowAR mesh, these
simulations typically ran for 30 hours on 2K cores reaching t = 0.068s.

Figure 18 compares the experimental data from [3] with three different simulations using
the same mesh (grid07conformal03lowAR) but different turbulence models: SST-DES (one
with shifted quadrature rules and one without, see discussion in Section 3.2.2) and a LES
with NSO. The coordinate-system origin used in these figures is at the leading edge of the tip
of the wing. At this resolution, there is no significant difference between the three different
simulations. All three simulations indicate a large x-direction velocity deficit (instead of an
acceleration) in the vortex core. This discrepancy in ux with the experimental data may be
due to an over-dissipative turbulence model in the wake, as described in [6]. Additionally,
for the high resolution mesh (grid07conformal04lowAR), the resolution was increased in the
tip-vortex block but not in the unstructured mesh region between the wing and the start
of the tip-vortex block. Therefore, the mesh resolution across the vortex core may also be
under resolved. While there is a small difference in the vortex core location, Figure 18 shows
that there is good agreement between the vertical velocity distribution and the experimental
data at this location.

Additionally, we performed a mesh refinement study using the SST-DES turbulence
model and the grid07conformal03lowAR and grid07conformal04lowAR meshes described in
Table 1. Figure 19 shows the downstream and vertical velocity distributions for which both
models used the SST-DES turbulence model. There is little difference between the two
mesh resolutions for the SST-DES model. Finally, Figure 20 shows the pressure-coefficient
distribution at two blade locations, near the wing tip and at the wing midpoint, using
both the grid07conformal03lowAR and grid07conformal04lowAR meshes. All models predict
similar wing surface pressure coefficients across most of the wing, though the NSO model is
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Figure 19: Velocity distributions in the tip-vortex at x/c = 5 as function of the spanwise
direction. Streamwise velocity (left). Vertical velocity (right).

Figure 20: Negative of the wing pressure coefficient, Cp, near the wing tip y/c = 0.0198
(left) and near the wing midpoint y/c = 1.6797 (right).

slightly different at the trailing edge of the wing tip.

4 Summary

Our ALCC allocaiton was put to good use in demonstrating the ability of the Nalu CFD code
to simulate atmospheric flows and complex geometries relevant to wind energy simulations.
In particular, we performed a series of neutral atmospheric boundary layers to establish
baseline timings and solver scaling performance on Cori. We also successfully simulated a
finite-length blade (the McAlister-Takahashi wing), that has extensive validation data from
an established wind-tunnel experiment. We established best-performing linear-solver settings
under MPI-only communication by exploring multiple solver/preconditioner combinations
and we established further baseline timing and scaling results on Haswell processors for
mixed-element meshes, against which we can compare future improvements. Importantly,
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we are moving to MPI+OpenMP parallelism in the next phase of the ExaWind project, and
these timing and scaling data will be important for performance quantification. Finally, we
also established baseline validity of our detached-eddy simulation, the improvement of which
is a focus of future A2e and ExaWind project elements.

References

[1] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and
A. Williams. An overview of Trilinos. Technical Report SAND2003-2927, Sandia National
Laboratories, 2003.

[2] H. C. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochrant. SIERRA Toolkit
computational mesh conceptual model. Technical Report SAND2010-1192, Sandia Na-
tional Laboratories, 2010.

[3] K. W. McAlister and R. K. Takahashi. NACA 0015 wing pressure and trailing vor-
tex measurements. Technical Report NASA-A-91056, National Aeronautics and Space
Administration, AMES Research Center, Moffett Field, CA, 1991.

[4] F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the
SST turbulence model. In K. Hanjalic, Y. Nagano, and M. Tummers, editors, Turbulence,

Heat and Mass Transfer 4, pages 625–632. Begell House, Inc., 2003.

[5] D.M. Driver and H.L. Seegmiller. Features of a reattaching turbulent shear layer in
divergent channel flow. AIAA Journal, 23, 1985.

[6] Chao-Tsung Hsiao and Laura L. Pauley. Numerical study of the steady-state tip vortex
flow over a finite-span hydrofoil. J. Fluids Eng., 120(2):345, 1998.

A MueLU-AMG parameter settings

A.1 MueLu-AMG parameter settings for the Additive-Schwarz
ILU(0) smoother

<ParameterList name="MueLu">

<Parameter name="verbosity" type="string" value="low"/>

<Parameter name="coarse: max size" type="int" value="2000"/>

<Parameter name="max levels" type="int" value="6"/>

<Parameter name="transpose: use implicit" type="bool" value="true"/>

<Parameter name="smoother: type" type="string" value="schwarz"/>

<ParameterList name="smoother: params">

<Parameter name="schwarz: num iterations" type="int" value="1"/>

<Parameter name="schwarz: overlap level" type="int" value="0"/>

<Parameter name="inner preconditioner name" type="string" value="RILUK"/>

<ParameterList name="inner preconditioner parameters">

<Parameter name="fact: iluk level-of-fill" type="int" value="0"/>
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</ParameterList>

</ParameterList>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: drop tol" type="double" value="0.005"/>

<Parameter name="repartition: enable" type="bool" value="true"/>

<Parameter name="repartition: min rows per proc" type="int" value="1000"/>

<Parameter name="repartition: start level" type="int" value="1"/>

<Parameter name="repartition: max imbalance" type="double" value="1.327"/>

<Parameter name="repartition: partitioner" type="string" value="zoltan2"/>

</ParameterList>

A.2 MueLu-AMG parameter settings for the Additive-Schwarz
ILUT(1) smoother

<Parameter name="verbosity" type="string" value="low"/>

<Parameter name="coarse: max size" type="int" value="2000"/>

<Parameter name="max levels" type="int" value="5"/>

<Parameter name="transpose: use implicit" type="bool" value="true"/>

<Parameter name="smoother: type" type="string" value="schwarz"/>

<ParameterList name="smoother: params">

<Parameter name="schwarz: num iterations" type="int" value="1"/>

<Parameter name="schwarz: overlap level" type="int" value="0"/>

<Parameter name="inner preconditioner name" type="string" value="ILUT"/>

<ParameterList name="inner preconditioner parameters">

<Parameter name="fact: ilut level-of-fill" type="int" value="1"/>

<Parameter name="fact: drop tolerance" type="double" value="10.0"/>

</ParameterList>

</ParameterList>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: drop tol" type="double" value="0.005"/>

<Parameter name="aggregation: drop scheme" type="string" value="distance laplacian"/>

<Parameter name="repartition: enable" type="bool" value="true"/>

<Parameter name="repartition: min rows per proc" type="int" value="1000"/>

<Parameter name="repartition: start level" type="int" value="1"/>

<Parameter name="repartition: max imbalance" type="double" value="1.327"/>

<Parameter name="repartition: partitioner" type="string" value="zoltan2"/>

</ParameterList>

A.3 MueLu-AMG parameter settings for the Gauss-Seidel-L1 smoother

<ParameterList name="MueLu">

<Parameter name="verbosity" type="string" value="low"/>

<Parameter name="coarse: max size" type="int" value="2000"/>

<Parameter name="max levels" type="int" value="6"/>

<Parameter name="transpose: use implicit" type="bool" value="true"/>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Gauss-Seidel"/>

<Parameter name="relaxation: fix tiny diagonal entries" type="bool" value="true"/>

<Parameter name="relaxation: use l1" type="bool" value="true"/>

<Parameter name="relaxation: sweeps" type="int" value="4"/>

<Parameter name="relaxation: damping factor" type="double" value="1.00"/>
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</ParameterList>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: drop tol" type="double" value="0.005"/>

<Parameter name="aggregation: drop scheme" type="string" value="distance laplacian"/>

<Parameter name="repartition: enable" type="bool" value="true"/>

<Parameter name="repartition: min rows per proc" type="int" value="1000"/>

<Parameter name="repartition: start level" type="int" value="1"/>

<Parameter name="repartition: max imbalance" type="double" value="1.327"/>

<Parameter name="repartition: partitioner" type="string" value="zoltan2"/>

</ParameterList>

A.4 MueLu-AMG parameter settings for the Chebyshev smoother

<ParameterList name="MueLu">

<Parameter name="verbosity" type="string" value="none"/>

<Parameter name="coarse: max size" type="int" value="2000"/>

<Parameter name="max levels" type="int" value="6"/>

<Parameter name="transpose: use implicit" type="bool" value="true"/>

<Parameter name="smoother: type" type="string" value="CHEBYSHEV"/>

<ParameterList name="smoother: params">

<Parameter name="chebyshev: degree" type="int" value="4"/>

<Parameter name="chebyshev: ratio eigenvalue" type="double" value="20"/>

<Parameter name="chebyshev: min eigenvalue" type="double" value="1.0"/>

<Parameter name="chebyshev: zero starting solution" type="bool" value="true"/>

<Parameter name="chebyshev: eigenvalue max iterations" type="int" value="15"/>

</ParameterList>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: drop tol" type="double" value="0.005"/>

<Parameter name="aggregation: drop scheme" type="string" value="distance laplacian"/>

<Parameter name="repartition: enable" type="bool" value="true"/>

<Parameter name="repartition: min rows per proc" type="int" value="1000"/>

<Parameter name="repartition: start level" type="int" value="2"/>

<Parameter name="repartition: max imbalance" type="double" value="1.327"/>

<Parameter name="repartition: partitioner" type="string" value="zoltan2"/>

</ParameterList>
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